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Abstract—Optic disc segmentation is a key element in 

automatic screening systems, which facilitates the detection of 

lesions that affect the interior surface of the eye (i.e. fundus). 

Therefore, this paper aims to provide a fully automated 

technique for detecting and segmenting the optic disc. First, the 

fundus image is preprocessed in order to estimate the 

approximate location of the optic disc, excluding the positions 

that doubtfully contain the optic disc. Consequently, the top 

candidates for the optic disc are detected and then ranked based 

on their strengths. Afterwards, the vessels density within each 

candidate is calculated and then weighted according to the 

candidate’s strength, in which the one having the highest score is 

chosen to be the segmented optic disc. The performance of the 

proposed segmentation algorithm is evaluated over nine 

heterogeneous datasets of fundus images, achieving a sensitivity 

of 94.72%. 

Keywords—candidates weighting; circularity strength; fundus 

image; optic disc segmentation; vessels density 

I. INTRODUCTION 

Ophthalmologists are able to diagnose eye diseases using 
images of the eye fundus which is photographed directly 
through the eye’s pupil via a specialized low-power 
microscope with an attached camera [1]. Thereby, computer 
vision systems are developed in order to localize and analyze 
fundus landmarks, namely the optic nerve head (i.e. optic disc 
and optic cup), the vasculature (i.e. arteries and veins), and the 
macular region (i.e. macula and fovea). This segmentation also 
leads to detecting many eye abnormalities that result in slight-
to-major changes of the eye’s interior surface, such as 
exudates, neovascularization, macular edema, notching, etc. 
fig. 1 illustrates the landmarks of a normal eye fundus: 

 
Fig. 1. Eye fundus image 

The optic disc is considered the blind spot of the eye where 
the optic nerve enters the retina, coming from the brain. As 
noticed in fig. 1, it is characterized by having a circular shape 

whose diameter constitutes around one-sixth to one-tenth of the 
whole fundus width. Also, the optic disc normally appears as a 
bright region at which the central (i.e. major) retinal vessels 
originate and radiate above and below. It is typically located 
towards the left-side or the right-side of a left-eye or a right-
eye fundus image, respectively [1], [2]. 

Furthermore, studying the spatial structure of the optic disc 
facilitates the diagnosis of some eye diseases. For instance, 
both the cup-to-disc ratio and the ISNT rim thickness rule 
(Inferior > Superior > Nasal > Temporal) are two intrapapillary 
indicators used to diagnose glaucoma which is characterized by 
the cupping of the optic disc, as well as the thinning of the 
Inferior and Superior rims (i.e. notching) [1], as noticed in fig. 
2-b. 

 
Fig. 2. (a) Healthy      (b) Glaucoma (cupping & notching) 

Also, fig. 3-b shows how diabetic retinopathy can be 
diagnosed by localizing and inpainting the optic disc, which 
facilitates the detection of exudates, a key feature of diabetic 
retinopathy, that are usually confused with the optic disc [2], 
[3]. 

 
Fig. 3. (a) Healthy       (b) Diabetic retinopathy (hard exudate) 

The remainder of this paper is organized as follows. 
Section II reviews the previous work pertaining to optic disc 
segmentation. Section III describes our proposed system for 
segmenting the optic disc. Finally, the paper presents the 
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results of the proposed technique, followed by a concluding 
section. 

II. RELATED WORK 

This section reviews the previous work done in optic disc 
segmentation, since the optic disc is considered the key 
element in fundus images that leads to detecting and 
diagnosing serious eye lesions such as glaucoma and diabetic 
retinopathy, as mentioned in section I. Allam et al. [4] 
presented a survey of optic disc segmentation algorithms 
through which the main methods reviewed in the literature 
were categorized as follows: 

A. Techniques based on the properties of optic disc 

Such techniques exploit few or all of the main 
characteristics of the optic disc listed in the previous section, 
namely its brightness, relative width, roundness, location 
within the fundus image, or the existence of blood vessels in its 
vicinity. For instance, Goldbaum et al. [5] located the optic 
disc by observing its bright color as well as detecting the major 
blood vessels radiating at the top and bottom of it. Walter et al. 
[6] detected the center of the optic disc by identifying the 
biggest and the brightest region in the fundus image. They 
detected 47 of the optic discs found in 81 fundus images of the 
STARE dataset. Exploiting the circularity and the brightness of 
the optic disc, Zhu et al. [7] [1] employed the Circular Hough 
Transform (CHT) to detect the best-fitting circle for the optic 
disc which was selected based on an intensity criterion. Their 
approach succeeded to detect the optic disc in 36 of the 40 
images found in the DRIVE dataset, but failed to detect the 
optic disc in more than half of the images of the STARE 
dataset. Additionally, Lu [8] localized the boundary and the 
centroid of the optic disc by observing both the roundness of 
the optic disc as well as the intensity variation across its 
boundary. Their approach determined the pixels with the 
maximum variation along multiple evenly-oriented radial lines 
of specific length. Their technique was tested over three 
different datasets, MESSIDOR, STARE, and a subset of 
ARIA. Also, Yu et al. [9] localized the optic disc via a 
technique of detecting the brightest pixels iteratively, as to be 
robust against the existence of any bright lesions such as hard 
exudates. They also set thresholds for the area of the optic disc 
and its circularity in order to select the optic disc over other 
nominees. They reported that their approach achieved a 
detection rate of 95%, although only 40 selected images of the 
STARE dataset were tested, which means that this rate might 
have been worse if the whole dataset had been used. 

B. Techniques based on the convergence of blood vessels 

Another method for identifying the optic disc is to utilize 
the spatial relationship between the optic disc and the retinal 
vessels, since the optic disc is the convergence region of the 
large blood vessels which branch into more thinner vessels 
within the fundus image [2]. Accordingly, Hoover et al. [10] 
proposed an approach based on a voting-type technique to 
detect the optic disc center by identifying the convergence 
point of the retinal vessels. This algorithm was able to detect 
the center of the optic disc in 72 of the images of the STARE 
dataset. Also, ter Haar [11] applied the General Hough 
Transform (GHT) over the pixels of, as well as the ones near 
to, the vasculature tree. They examined their technique over the 

STARE dataset, which detected the optic disc successfully in 
58 of the fundus images. The technique presented by Fleming 
et al. [12] approximated the optic disc location by using an 
elliptic curve of the blood vessels. Then this approximate 
region of the optic disc was structurally enhanced via the CHT, 
which successfully identified the optic disc in 98.4% of the 
fundus images within a locally-based dataset. Rangayyan et al. 
[13], [1] exploited Gabor filtering to extract the retinal 
vasculature tree, and then they utilized phase portrait modeling 
to detect the convergence point(s) of the vessels, in which the 
best-fitting oval for the optic disc was selected using an 
intensity criterion. Their technique correctly localized the optic 
disc in all of the 40 images in the DRIVE dataset, and 56 of the 
81 images in the STARE dataset. 

C. Techniques based on template matching 

Another category of optic disc segmentation methods is 
based on defining a template image to be matched against a 
number of candidates in order to select the best-matching 
image. For instance, Li et al. [14] applied the Principal 
Component Analysis to create an optic disc model called the 
disc-space. The candidates having the brightest 1% intensity-
level were then matched with that disc-space to detect the optic 
disc. Also, Foracchia et al. [15] defined the directionality of the 
retinal vessels at any certain position via a geometrical model 
using the coordinates of the optic disc center. The optic disc 
was successfully located in 79 of the STARE fundus images. In 
the same direction of exploiting the vessels directionality, 
Youssif et al. [2] presented a technique that matched the 
directional pattern of the blood vessels in the fundus image. 
They created a directional map of the retinal vessels which 
were extracted using a Gaussian matched filter. The optic disc 
was successfully detected in all the images of the DRIVE 
dataset, as only one case was missed within the STARE 
dataset.  

Aquino et al. [16] employed a voting-type algorithm to 
locate an initial pixel within the optic disc. Afterwards the 
algorithm utilized morphological processing and edge 
detection techniques followed by CHT in order to approximate 
the circular boundary of the optic disc. This technique 
successfully detected 86% of the 1200 fundus images in the 
MESSIDOR dataset. Additionally, Zhang et al. [17] obtained a 
set of candidate vertical regions for the optic disc based on the 
properties of blood vessels found in the vicinity of the optic 
disc, namely, the vessels high density, compactness of vertical 
vascular segments, and the vessels uniform distribution. 
Afterwards, the vertical coordinate (y-axis) of the optic disc 
was determined according to the vessels directionality via 
parabola curve fitting. The optic disc was successfully detected 
in all images of the DIARETDB0, DIARETDB1 and DRIVE 
datasets, while only one optic disc was undetected in the 
STARE dataset. 

III. PROPOSED SYSTEM 

The block diagram shown in fig. 4 illustrates our proposed 
architecture of optic disc segmentation, showing the input data 
as well as the operations utilized in manipulating the eye 
fundus images in order to obtain the segmented optic disc. 
Each of the four block components of this architecture is 
discussed in detail at the subsequent sections (A, B, C, and D): 
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Fig. 4. Block Diagram of Proposed System Architecture 

A. Input Dataset: fundus images and ground truth 

The fundus images are the raw data to be processed in order 
to segment the optic disc. These fundus images are usually 
accompanied by a ground truth which is used for comparing 
the results achieved by a computer program against the manual 
segmentations provided by medical experts. Table I shows a 
chronological list of the publicly available datasets, which are 
all used for testing and assessing our proposed segmentation 
method. 

TABLE I.  EYE FUNDUS DATASETS 

Dataset Name 
No. of 

Images 
FOV 

Images Size 

(in pixels) 

Images 

Format 

Ground 

Truth 

STARE (2000) 
[18] 

81 35° 700×605 PPM OD & BV 

DRIVE (2004) 
[19] 

40 45° 565 × 584 TIFF BV 

MESSIDOR 
(2004) [20] 

1200 45° 
Set1: 1440×960 
Set2: 2240×1488 
Set3: 2304×1536 

TIFF 
Retinopathy 
and Macular 
Edema 

ONHSD (2004) 
[21] 

99 45° 760×570 BMP OD 

ARIA (2006) 
[22], [23] 

143 50° 768×576 TIFF 
OD, BV and 
Fovea 

DIARETDB0 & 
DIARETDB1 
(2008) [24] 

215 50° 1500×1152 PNG 
MA, HE and 
Soft & Hard 
Exudates 

DRIONS-DB 
(2008) [25] 

110 - 600×400 JPG OD 

HRF (2009) [26] 45 45° 3504×2336 JPG BV 

FOV = field of view, OD = optic disc, BV = blood vessels, MA = microaneurysms, HE = 
hemorrhages 

B. Fundus Image Preprocessing 

Since the digital fundus images at its raw state cannot be 
processed directly to localize the optic disc, therefore an image 
should be prepared first in order to make it ready for further 
segmentation. For instance, not all datasets are accompanied 
with the binary mask that defines the region of interest (i.e. 
semi-oval fundus), neither all datasets include the vasculature 
tree of the fundus images, which is a vital component in the 
process of segmenting the optic disc. Accordingly, the 
following subsections present the main preprocessing steps 
utilized in the proposed segmentation approach, which 
intuitively starts with generating the binary masks and 
extracting the vasculature tree. 

1) Mask Generation 
Binary masks are typically generated and then utilized in 

order to exclude the black region that surrounds the fundus 
image from any further useless processing, as shown in fig. 5. 
The proposed segmentation method exploits the technique 
presented by ter Haar [11]. First, the red band of the fundus 
image is thresholded at value of t=35. Afterwards, this binary 
image is processed through the opening, closing and erosion 
morphological operators using a 3×3 square structuring 
element. 

 
Fig. 5. Binary Mask Generation (a) Original imag (b) Binary mask (c) Region 

of interest 

This mask generation approach also succeeds in excluding 
insignificant artifacts present in some fundus images (e.g. date, 
time, batch number, etc.). These artifacts were imprinted on the 
fundus images most likely for labeling and documentation 
purposes, such as the images of ONHSD and DRIONS-DB. 

2) Blood Vessels Extraction 
The vasculature is roughly extracted via the Canny edge 

detector using the intensity image specified by the mask, as 
shown in fig. 6. This step of extracting the vascular tree will be 
furtherly benefited twice. First, it will be utilized to split the 
fundus into two vertical halves indicating which half contains 
the optic disc (part B.3). The second benefit is that these 
detected retinal vessels will be utilized to calculate the density 
of vessels within each of the segmented optic disc candidates 
(part C.2). 

3) Vertical Splitting 
As mentioned previously in section I, the optic disc is 

typically located towards the left-side or the right-side of a left-
eye or a right-eye fundus image, respectively, and from which 
the major blood vessels originate. Thus, the optic disc is 
normally located at the half containing more blood vessels than 
the other (as noticed in fig. 1 and fig. 6). 

(a) (c) (b) 
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Fig. 6. Vessels Extraction (a) Reference image (b) Extracted blood vessels 

Thereby, the fundus image is vertically split into two halves 
(i.e. left and right), and the half with much blood vessels is 
selected for further image processing whereas the other one 
having less vessels is excluded (fig. 7). This splitting approach 
kills two birds with one stone; first, it greatly reduces all 
further processing-time to almost 50%. Secondly, it reduces the 
number of false candidates of the optic disc which may occur 
in the excluded half. These false candidates may result from 
artifacts that are similar to the optic disc such as exudates, or 
may also sometimes occur due to non-uniform illumination 
(i.e. vignetting effect). 

 
Fig. 7. Vertical Splitting (a) Left and right extracted vessels (b) Selected half 

4) Contrast Enhancement 
In the direction of segmenting the optic disc, the contrast of 

fundus image is first enhanced in order to improve the 
segmentation process. At the beginning, the color fundus 
image is converted to a grayscale intensity image by 
eliminating the hue and saturation information while retaining 
the luminance. Consequently, the intensity pixels in this 
grayscale image are mapped to new values such that 1% of the 
data is saturated at low and high intensities of the grayscale 
image. This in turn increases the contrast of the output image, 
as shown in fig. 8. 

C. Optic Disc Segmentation 

This component is the backbone of the system architecture. 
First, the top three candidates for the optic disc are detected 
and then ranked based on their circularity strengths. 
Consequently, the vessels density within each candidate is 
calculated and then weighted according to the candidate’s 
strength. At the end, the candidate having the highest score is 
selected as the segmented optic disc. 

 

 
Fig. 8. Contrast Enhancement (a) Original image (b) Intensity image of 

selected half (c) Adjusted contrast of intensity image 

1) Detecting Optic Disc Candidates 
Identifying the optic disc candidates is the most important 

step that greatly affects the accuracy of the whole segmentation 
process. The objective of this process is to detect the top three 
candidates of the optic disc based on its main spatial properties: 
its brightness, size, roundness, and before all, its approximate 
location within the fundus (i.e. left half or right half). Since the 
approximate location of the optic disc had been already 
determined previously, therefore this step is only concerned 
with the other three properties: 

- Brightness: the contrasted intensity image is converted to 
a binary image by thresholding it at t=255, in order to detect 
only the bright (white) artifacts in the fundus image. 

- Size: as mentioned before, the optic disc constitutes one-
tenth to one-sixth of the width of the whole fundus image. 
Accordingly, the algorithm estimates the radius range of the 
optic disc relative to the width of the fundus image, rounded to 
the greater integer. For instance, in the DRIVE dataset whose 
fundus widths are 584 pixels, the radii of the optic discs are 
estimated within a range of (30 to 50) pixels. The radius range 
(min-to-max) is estimated as follows: 

        (
     

   
)  

  

 
 (1) 

        (
     

  
)  

  

 
 (2) 

- Roundness: because the optic disc is characterized by 
having a circular shape, the algorithm first applies some 
morphological opening operators in order to structurally 
enhance the circular objects in the thresholded image. 
Consequently, the Circular Hough Transform is utilized in 
order to detect and localize all the circular shapes specified by 
the estimated radii. 

Based on all these previous spatial properties, the strongest 
three circular shapes are chosen as the top candidates of the 
optic disc, and these candidates are then ranked according to 
their circularity strengths. 

2) Calculating Vessels Density 
It was mentioned before that the major blood vessels 

radiate from the center of the optic disc. Therefore, the vessels 
density within each candidate is calculated in order to 
determine how much blood vessels each candidate contains. 

(a)         (b) 

(a) (b) 

(a) (c) (b) 
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For each of the three optic disc candidates, the corresponding 
vessels density is calculated as follows: 

         
         

         
 (3) 

where, Size (BV) is the number of pixels of the blood 
vessels inside the detected candidate, and Size (OD) is the 
number of pixels within the candidate optic disc (i.e. the area 
of the oval). 

3) Weighting Vessels Density 
Having the top three ranked candidates of the optic disc, as 

well as the vessels density within each candidate, the vessels 
density is weighted accordingly. First, each candidate is 
assigned a weight based on its circularity strength. These 
weights are determined empirically as w1 = 1.2, w2 = 1.1, w3 = 
1.0, for the strongest, moderate and weakest candidates, 
respectively. Consequently, the calculated vessels densities are 
weighted according to the candidates’ strengths, as follows: 

                   (4) 

                   (5) 

                   (6) 

4) Selecting the Segmented Optic Disc 
The final step in the segmentation procedure is to choose 

one of the candidates to be the optic disc. Each of the figures 
from fig. 9 to fig. 14, show various examples of selecting the 
optic disc candidate within healthy and pathological images. 
(Note: these figures are best viewed within the paper when 
zoomed to 200% or more). The top three candidates of the 
optic disc in a fundus image are: the red circle (strongest 
candidate), the green circle (moderate candidate), and the blue 
circle (weakest candidate). 

Fig. 9 and fig. 10 show examples of how the strongest 
candidate is selected (red circle). In fig. 9, for instance, the red 
candidate was promoted and selected as the optic disc due to 
weighting, although the blue circle has denser blood vessels. 
Also, fig. 10 shows a good example of how vertical splitting 
succeeded in excluding the right half which contained a false 
candidate (i.e. large exudate) that looked like the optic disc. 

Fig. 11 and fig. 12 show how the moderate candidate is 
selected (green circle). These examples emphasize the 
importance of the vessels density together with the candidates’ 
weights, in order to accurately localize the optic disc in the 
fundus image. For instance, although the moderate candidate in 
fig. 11 was not the one with the densest vessels nor the highest 
weight among other candidates, yet this green candidate was 
weighted in such a way that it scored a value surpassing those 
scored by both, the strongest and the weakest candidates. 

In the examples shown in fig. 13 and fig. 14, the blue circle 
was selected although it is the weakest candidate. This is 
because neither of the two other stronger candidates were 
weighted highly enough to achieve a score greater than that 
achieved by the weak (blue) candidate. 

 

 

 
Fig. 9. Example of selecting the strongest candidate in a healthy image 

(DRIVE: “32_training.tif”) 

 
Fig. 10. Example of selecting the strongest candidate in a pathological image 

(STARE: “im0008.ppm”) 
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Fig. 11. Example of selecting the moderate candidate in a healthy image 

(DRIVE: “22_training.tif”) 

 
Fig. 12. Example of selecting the moderate candidate in a pathological image 

(STARE: “im0011.ppm”) 

D. Segmentation Evaluation 

In order to evaluate the proposed segmentation algorithm, 
our produced segmentations are compared against the provided 
ground truths. The evaluation of the algorithm is measured via 
“sensitivity” which is the true positive rate of detecting the 
optic disc. 

 
Fig. 13. Example of selecting the weakest candidate in a healthy image 

(DRIVE: “03_test.tif”) 

 
Fig. 14. Example of selecting the weakest candidate in a pathological image 

(STARE: “im0043.ppm”) 

Fig. 15, fig. 16, and fig. 17 show samples from different 
datasets of fundus images and their corresponding ground 
truths of the optic disc. It is worth to mention that the ground 
truth is not always represented in the same manner within all 
datasets; even some datasets, such as HRF, represent this 
ground truth textually, rather than showing it graphically. 
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Fig. 15. Example of a fundus image and its corresponding ground truth in 

STARE dataset 

 
Fig. 16. Example of the fundus image and its corresponding ground truth in 

ARIA dataset 

 
Fig. 17. Example of the fundus image and its corresponding ground truth in 

DRIONS-DB dataset 

IV. EXPERIMENTAL RESULTS 

The proposed algorithm was implemented using MATLAB 
R2013a under a platform of Windows 10 Pro with a CPU i5-
3230M of 2.60 GHz. The system was tested over nine 
miscellaneous datasets having extremely heterogeneous 
properties (e.g. image spatial size, image quality, FOV, format, 
etc.). The purpose of using heterogeneous datasets was to 
prove the effectiveness of the segmentation algorithm, over any 
fundus image whatsoever. 

Table II distinguishes the results achieved by our proposed 
approach over the nine different datasets, mainly in terms of 
the sensitivity and the processing time. 

TABLE II.  RESULTS OF PROPOSED METHOD 

No. Dataset Name 
No. of 

Images 

No. of Correct 

Responses 
Sensitivity 

Processing Time (in 

seconds) 

Avg. Processing 

Time per Image 

No. of Pixels per 

Image 

1 ARIA 143 121 0.8462 78.1165 0.5463 442,368 

2 DIARETDB0 126 114 0.9048 174.4838 1.3848 1,728,000 

3 DIARETDB1 89 79 0.8876 122.7492 1.3792 1,728,000 
4 DRIONS-DB 110 110 1.0000 40.2961 0.3663 240,000 

5 DRIVE 40 39 0.9750 14.4641 0.3616 329,960 

6 HRF 45 42 0.9333 296.2217 6.5827 8,185,344 

7a MESSIDOR (set1) 400 394 0.9850 933.4118 2.3335 1,382,400 

7b MESSIDOR (set2) 400 389 0.9725 440.6891 1.1017 3,333,120 

7c MESSIDOR (set3) 400 390 0.9750 731.8618 1.8297 3,538,944 
8 ONHSD 99 94 0.9495 56.5776 0.5715 433,200 

9 STARE 81 59 0.7284 45.9078 0.5668 423,500 

 ALL DATASETS 1933 1831 0.9472 2934.7796 1.5183 - 

Table III shows a comparison of our proposed method against the different optic disc detection methods reviewed in section II, from the perspective of the 
detection approach, the employed datasets, and the sensitivity of detecting the optic disc. 

TABLE III.  RESULTS OF OPTIC DISC DETECTION TECHNIQUES 

No. Detection Technique Input Dataset(s) Sensitivity 

1 Goldbaum et al., (1996) [5] None - 

2 Walter et al., (2001) [6] 
Local dataset (30 images) 
STARE1 

0.9000 
0.5802 

3 Hoover et al., (2003) [10] STARE  0.8888 

4 Foracchia et al., (2004) [15] STARE 0.9753 

5 Li et al., (2004) [14] Local dataset (89 images) 0.9888 

6 Ter Haar, (2005) [11] 
Local dataset (191 images) 
STARE 

0.9634 
0.7160 

7 Fleming et al., (2007) [12] Local dataset (1056 images) 0.9840 

8 Youssif et al., (2008) [2] 
DRIVE 
STARE 

1.0000 
0.9877 

9 Aquino et al., (2010) [16] MESSIDOR 0.8600 

10 Rangayyan et al., (2010) [13] 
DRIVE 
STARE 

1.0000 
0.6913 

11 Zhu et al., (2010) [7] 
DRIVE 
STARE 

0.9000 
0.4444 

                                                           
1 Additional results were obtained from ter Haar [11]. 
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No. Detection Technique Input Dataset(s) Sensitivity 

12 Lu, (2011) [8] 
ARIA subset (120 images) 
MESSIDOR 
STARE 

0.9750 
0.9975 
0.9876 

13 Yu et al., (2014) [9] STARE subset (40 images) 0.9500 

14 Zhang et al., (2014) [17] 

DIARETDB0 
DIARETDB1 
DRIVE 
STARE 

1.0000 
1.0000 
1.0000 
0.9877 

15 
Proposed Method, (2016): Weighting vessels density within the 
strongest optic disc candidates 

ARIA 
DIARETDB0 
DIARETDB1 
DRIONS-DB 
DRIVE 
HRF 
MESSIDOR (3 sets) 
ONHSD 
STARE 

0.8462 
0.9048 
0.8876 
1.0000 
0.9750 
0.9333 
0.9775 
0.9495  
0.7284 

V. CONCLUSION 

The segmentation methods that are solely dependent on the 
spatial properties of the optic disc (e.g. its circularity, 
brightness, relative width and location within the fundus 
image) achieve high detection rates within healthy fundus 
images that contain no abnormalities. But, these property-based 
methods are usually unable to detect and localize the optic disc 
in the presence of bright oval-shaped lesions, such as the 
exudates, which are confused with the optic disc due to their 
like-looking structure. 

Alternatively, other segmentation techniques, which rely on 
the convergence of blood vessels or template matching, achieve 
higher sensitivity rates. This is because the numbers of wrong 
responses are greatly reduced in the presence of other objects 
that look like the optic disc.  

However, such approaches obviously take more processing 
time and normally require pre-customized templates or image-
dependent parameters. 

Thereby, our segmentation approach proposed in this paper 
benefited the advantages of these different alternatives, in a 
simple and straightforward way.  

It relied on the spatial characteristics of the optic disc, and 
at the same time, it reduced the number of false candidates in 
order improve the sensitivity rates within pathological images, 
and above all, in a fully-automated manner. 

The proposed algorithm was tested and evaluated over nine 
public datasets containing a total of 1933 images. The 
segmentation algorithm proved its effectiveness by segmenting 
the optic disc correctly in 1831 images achieving a total 
sensitivity of 94.72% which was comparable to the results 
achieved by the other approaches. But more importantly, the 
implementation of the segmentation algorithm was fully 
automated regardless of the extreme heterogeneity of the tested 
datasets (e.g. spatial size, FOV, image quality, etc.); as image-
dependent parameters are neither adjusted nor are predefined 
templates used for the sake of customizing the proposed 
algorithm over certain datasets. 
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